We study quantum algorithms that learn properties of a matrix using queries that return its action on an input vector. We show that for various problems, including computing the trace, determinant, or rank of a matrix or solving a linear system that it specifies, quantum computers do not provide an asymptotic speedup over classical computation. On the other hand, we show that for some problems, such as computing the parities of rows or columns or deciding if there are two identical rows or columns, quantum computers provide exponential speedup. We demonstrate this by showing equivalence between models that provide matrix-vector products, vector-matrix products, and vector-matrix-vector products, whereas the power of these models can vary significantly for classical computation.
翻译:我们用返回输入矢量动作的查询来学习矩阵属性的量子算法。 我们显示,对于各种问题,包括计算矩阵的痕量、决定因素或等级,或解决其指定的线性系统,量子计算机不能提供与古典计算无症状的加速。 另一方面,我们显示,对于一些问题,例如计算行或列的等距,或决定是否有两个相同的行或列,量子计算机可以提供指数加速。我们通过显示提供矩阵-矢量-矩阵产品、矢量-矩阵产品和矢量-矩阵-矢量-矢量计算产品的模型之间的等值来显示这一点,而对于古典计算而言,这些模型的力量则大不相同。