Covariance estimation for the Iterative Closest Point (ICP) point cloud registration algorithm is essential for state estimation and sensor fusion purposes. We argue that a major source of error for ICP is in the input data itself, from the sensor noise to the scene geometry. Benefiting from recent developments in deep learning for point clouds, we propose a data-driven approach to learn an error model for ICP. We estimate covariances modeling data-dependent heteroscedastic aleatoric uncertainty, and epistemic uncertainty using a variational Bayesian approach. The system evaluation is performed on LiDAR odometry on different datasets, highlighting good results in comparison to the state of the art.
翻译:迭接近点点点点点云登记算法的共变估计对于国家估计和感应聚合目的至关重要。 我们争辩说,比较方案的一个主要错误来源在于输入数据本身,从传感器噪音到现场几何。我们从点云深度学习的最新发展中受益,提出一种数据驱动方法,以学习比较方案错误模型。我们用变异贝耶斯方法估算了数据依赖性高湿度偏执不确定性和共变不确定性的模型。系统评价是对不同数据集的LIDARodology进行的,突出显示与最新技术相比的良好结果。