The packing problem and the covering problem are two of the most general questions in graph theory. The Erd\H{o}s-P\'{o}sa property characterizes the cases when the optimal solutions of these two problems are bounded by functions of each other. Robertson and Seymour proved that when packing and covering $H$-minors for any fixed graph $H$, the planarity of $H$ is equivalent to the Erd\H{o}s-P\'{o}sa property. Thomas conjectured that the planarity is no longer required if the solution of the packing problem is allowed to be half-integral. In this paper, we prove that this half-integral version of Erd\H{o}s-P\'{o}sa property holds for packing and covering $H$-topological minors, for any fixed graph $H$, which easily implies Thomas' conjecture. In fact, we prove an even stronger statement in which those topological minors are rooted at any choice of prescribed subsets of vertices. A number of results on $H$-topological minor free or $H$-minor free graphs have conclusions or requirements tied to properties of $H$. Classes of graphs that can half-integrally pack only a bounded number of $H$-topological minors or $H$-minors are more general topological minor-closed or minor-closed families whose minimal obstructions are more complicated than $H$. Our theorem provides a general machinery to extend those results to those more general classes of graphs without losing their tight connections to $H$.
翻译:包装问题和覆盖问题是图形理论中两个最一般的问题。 托马斯推测, 如果包装问题的最佳解决方案被相互功能所约束, 则计划性就不再需要计划性。 罗伯逊和西摩尔证明, 任何固定图形的包装和覆盖$H$- $- $- $- $, 计划性H$相当于Erd\ H{ { }s- P\ { 美元- o} a 属性。 托马斯推测, 如果允许包装问题的解决办法为半不透明, 计划性就不再需要。 在本文件中, 我们证明Erd\ H{ }- P\ 和 Seymour 的半透明版本用于包装和覆盖$- $- 地形未成年人, 这很容易暗示托马斯· 美元。 事实上, 我们证明, 更强烈的声明, 这些表性未成年人 只能根植于任何指定的硬性硬性硬性硬性部分 $- $- 美元 的固定货币- 普通货币- 或普通纸质- 的硬性货币- 的固定货币- 数字- 中, 这些硬性货币- 的平质- 或普通- 平质- 平质- 普通- 平质- 数字- 的结- 数字- 数字- 的结- 的结- 数字- 的数值- 的数值- 数字- 数字- 或平质- 或平质- 数字- 的数值- 或平面- 的数值- 一般- 数字- 数字- 的数值- 或平质- 的数值- 的数值- 数字- 一般- 的数值- 一般- 的数值- 或平数- 直序- 一般- 的数值- 等- 或平数- 的平- 的平数- 直- 或平- 或平数- 或平数- 等- 的平数- 的平- 的平数- 直序- 直序- 直- 或平质- 或平质- 一般- 的结- 等- 等- 等- 或平质- 等- 或平- 等- 等- 等- 数- 等- 直- 的