Dynamic Mode Decomposition (DMD) is an equation-free method that aims at reconstructing the best linear fit from temporal datasets. In this paper, we show that DMD does not provide accurate approximation for datasets describing oscillatory dynamics, like spiral waves and relaxation oscillations, or spatio-temporal Turing instability. Inspired from the classical "divide and conquer" approach, we propose a piecewise version of DMD (pDMD) to overcome this problem. The main idea is to split the original dataset in N submatrices and then apply the exact (randomized) DMD method in each subset of the obtained partition. We describe the pDMD algorithm in detail and we introduce some error indicators to evaluate its performance when N is increased. Numerical experiments show that very accurate reconstructions are obtained by pDMD for datasets arising from time snapshots of some reaction-diffusion PDE systems, like the FitzHugh-Nagumo model, the lambda-omega system and the DIB morpho-chemical system for battery modeling.
翻译:动态模式分解( DMD) 是一种没有方程式的方法, 目的是从时间数据集中重建最佳线性 。 在本文中, 我们显示 DMD 不为描述血管动态的数据集提供准确近似值, 比如螺旋波和放松振荡, 或者时空波动不稳定 。 在经典的“ divide and corration” 方法的启发下, 我们建议了一种拼图版 DMD (pDMD) 来克服这个问题。 主要的想法是分割 N 子矩阵中的原始数据集, 然后在获得的分区的每一子集中应用精确( 随机化) DMD 方法 。 我们详细描述 PDMD 算法, 并在 N 增加时引入一些错误指标来评估其性能 。 数值实验显示, PDMDMD 能够非常精确地重建由一些反应- 放大 PDE 系统( 如 FitzHugUG- Nagumo 模型 、 libda- omega 系统 和 DIB 电池模型化系统) 。</s>