Detecting irregular-shaped text instances is the main challenge for text detection. Existing approaches can be roughly divided into top-down and bottom-up perspective methods. The former encodes text contours into unified units, which always fails to fit highly curved text contours. The latter represents text instances by a number of local units, where the complicated network and post-processing lead to slow detection speed. In this paper, to detect arbitrary-shaped text instances with high detection accuracy and speed simultaneously, we propose a \textbf{Bi}directional \textbf{P}erspective strategy based \textbf{Net}work (BiP-Net). Specifically, a new text representation strategy is proposed to represent text contours from a top-down perspective, which can fit highly curved text contours effectively. Moreover, a contour connecting (CC) algorithm is proposed to avoid the information loss of text contours by rebuilding interval contours from a bottom-up perspective. The experimental results on MSRA-TD500, CTW1500, and ICDAR2015 datasets demonstrate the superiority of BiP-Net against several state-of-the-art methods.


翻译:检测异常成形的文本实例是探测文本的主要挑战。 现有的方法可以大致分为上到下到下到下到上到下到上到上到下到上到上到上到上到上到上到上到上到上到上到上到上到上到下到上到上到下到上到上到下到上到上到下到上到上到上到下到上到下到下到上到上到上到下到上到上到上到上到上到下到上到上到上到上到上到上到上到上到上到下到上,后者是一些地方单位的文字实例,复杂的网络和后到后处理导致检测速度缓慢。 在本文中,为了探测到高检测准确性和速度,我们建议了一种任意到的文本概要的连接算法,通过从下到下到下到下到的间距等,来避免对文本轮进行信息损失。 具体来说, 以自上到 MSRA- TD500, CTW1500, CT1500 和 ICDAR- NAD 的几- 和 BISD- 数据集的优越性。

0
下载
关闭预览

相关内容

卷积神经网络中的注意力机制综述
专知会员服务
76+阅读 · 2021年10月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
111+阅读 · 2019年11月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
已删除
将门创投
6+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2019年4月15日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
6+阅读 · 2018年7月9日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员