We provide a sound and complete proof system for an extension of Kleene's ternary logic to predicates. The concept of theory is extended with, for each function symbol, a formula that specifies when the function is defined. The notion of "is defined" is extended to terms and formulas via a straightforward recursive algorithm. The "is defined" formulas are constructed so that they themselves are always defined. The completeness proof relies on the Henkin construction. For each formula, precisely one of the formula, its negation, and the negation of its "is defined" formula is true on the constructed model. Many other ternary logics in the literature can be reduced to ours. Partial functions are ubiquitous in computer science and even in (in)equation solving at schools. Our work was motivated by an attempt to explain, precisely in terms of logic, typical informal methods of reasoning in such applications.
翻译:我们为将Kleene的永恒逻辑扩展至上游提供了健全和完整的验证系统。 理论概念以每个函数符号的公式扩展, 指定函数的定义时间。 “ 定义” 的概念通过直截了当的递归算法扩大到术语和公式。 “ 定义” 公式的构建是为了始终界定它们本身。 完整性证据依赖于亨金的构造。 对于每个公式, 精确地说就是公式之一, 其否定, 和否定其“ 定义” 公式, 在构建的模型上是真实的。 文献中许多其他的永恒逻辑可以缩到我们身上。 部分功能在计算机科学中是无处不在的, 甚至在( 在)解决学校中的( ) 等分解时也是无处的。 我们工作的动机是试图解释, 确切地用逻辑来解释这些应用中典型的非正式推理方法。