This paper deals with the problem of finding the preferred extensions of an argumentation framework by means of a bijection with the naive extensions of another framework. First we consider the case where an argumentation framework is naive-realizable: its naive and preferred extensions are equal. Recognizing naive-realizable argumentation frameworks is hard, but we show that it is tractable for frameworks with bounded in-degree. Next, we give a bijection between the preferred extensions of an argumentation framework being admissible-closed (the intersection of two admissible sets is admissible) and the naive extensions of another framework on the same set of arguments. On the other hand, we prove that identifying admissible-closed argumentation frameworks is coNP-complete. At last, we introduce the notion of irreducible self-defending sets as those that are not the union of others. It turns out there exists a bijection between the preferred extensions of an argumentation framework and the naive extensions of a framework on its irreducible self-defending sets. Consequently, the preferred extensions of argumentation frameworks with some lattice properties can be listed with polynomial delay and polynomial space.
翻译:本文涉及通过对另一个框架的天真延伸进行两截截取,找到一个理论框架的优先扩展范围的问题。 首先,我们考虑了一个论证框架可以天真实现的情况:它的天真和偏好扩展范围是平等的。 承认天真和偏爱的论证框架是困难的, 但我们表明,它对于在度上受约束的框架来说是可移植的。 其次,我们将一个论证框架的优先扩展范围(两套可受理框架的交叉部分是可以接受的)与同一组参数中另一个框架的天真扩展加以分辨。 另一方面,我们证明,确定可接受封闭的论证框架是共同的。 最后,我们提出了不可减损的自我减损概念,作为不属于他人结合的概念。 事实证明,在所选择的论证框架的优先扩展范围与不可忽略的自我界定框架的天真延伸之间,存在着一个两截分。 因此,与某些固定属性的论证框架的优先扩展范围可以与多式延迟和多式空间一起列出。