To alleviate the challenges of building Knowledge Graphs (KG) from scratch, a more general task is to enrich a KG using triples from an open corpus, where the obtained triples contain noisy entities and relations. It is challenging to enrich a KG with newly harvested triples while maintaining the quality of the knowledge representation. This paper proposes a system to refine a KG using information harvested from an additional corpus. To this end, we formulate our task as two coupled sub-tasks, namely join event extraction (JEE) and knowledge graph fusion (KGF). We then propose a Collaborative Knowledge Graph Fusion Framework to allow our sub-tasks to mutually assist one another in an alternating manner. More concretely, the explorer carries out the JEE supervised by both the ground-truth annotation and an existing KG provided by the supervisor. The supervisor then evaluates the triples extracted by the explorer and enriches the KG with those that are highly ranked. To implement this evaluation, we further propose a Translated Relation Alignment Scoring Mechanism to align and translate the extracted triples to the prior KG. Experiments verify that this collaboration can both improve the performance of the JEE and the KGF.


翻译:为了从头开始减轻建立知识图(KG)的挑战,一项更一般的任务就是从开放的主体中利用三重知识图(KG)来丰富一个KG,其中获得的三重知识图(KG)包含吵闹的实体和关系;用新收获的三重数据来丰富一个KG,同时保持知识代表质量;本文件提议了一个系统,利用从额外主体中获取的信息来改进KG;为此,我们将我们的任务发展成两个结合的子任务,即合并事件提取(JEE)和知识图聚合(KGF);然后,我们提议一个协作知识图组合框架,使我们的子任务能够交替地相互协助;更具体地说,由探险者进行由地面真相说明和由主管提供的现有KGG监督的JEEE。然后,由主管评估探险者提取的三重数据,用高分级数据来丰富KGG。为了执行这项评估,我们进一步建议一个翻译的Relate Connational Scolation Scorning 机制,以便将提取的三重合为KG。

1
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年5月3日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
Arxiv
13+阅读 · 2021年5月3日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
15+阅读 · 2018年4月5日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员