A regular path query (RPQ) is a regular expression q that returns all node pairs (u, v) from a graph database that are connected by an arbitrary path labelled with a word from L(q). The obvious algorithmic approach to RPQ-evaluation (called PG-approach), i.e., constructing the product graph between an NFA for q and the graph database, is appealing due to its simplicity and also leads to efficient algorithms. However, it is unclear whether the PG-approach is optimal. We address this question by thoroughly investigating which upper complexity bounds can be achieved by the PG-approach, and we complement these with conditional lower bounds (in the sense of the fine-grained complexity framework). A special focus is put on enumeration and delay bounds, as well as the data complexity perspective. A main insight is that we can achieve optimal (or near optimal) algorithms with the PG-approach, but the delay for enumeration is rather high (linear in the database). We explore three successful approaches towards enumeration with sub-linear delay: super-linear preprocessing, approximations of the solution sets, and restricted classes of RPQs.


翻译:常规路径查询( RPQ) 是一个常规表达式 q, 该表达式返回所有节点配对( u, v), 以来自 L( q) 的单词标注的任意路径连接的图形数据库中的所有节点配对( u, v) 。 对 RPQ 评估的明显算法方法( 称为 PG- aproach ), 即为 q 构建 NFA 和 图形数据库之间的产品图表, 因其简单性而具有吸引力, 并导致高效的算法。 但是, PG- aproach 的算法是否最佳, 尚不清楚。 我们通过彻底调查PG- aproach 能够达到哪些高复杂度界限, 我们用有条件的较低界限( 细微复杂度框架的意义上) 来补充这一问题。 一个特别的焦点是查点和延迟界限, 以及数据复杂性的视角是: 我们可以用 PG- aproach 来达到最佳( 接近) 算法, 但计时的延迟率相当高( 数据库中的线性 ) 。 我们探索了三种成功的方法, 以亚线延迟延迟延迟的解算法 : : Q 的超级RPPP 的预处理和近近。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
干货书《数据科学数学系基础》2020最新版,266页pdf
专知会员服务
319+阅读 · 2020年3月23日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
27+阅读 · 2021年2月17日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员