This paper investigates the problem of finding an optimal nonbinary index assignment from (M) quantization levels of a maximum entropy scalar quantizer to (M)-PSK symbols transmitted over a symmetric memoryless channel with additive noise following decreasing probability density function (such as the AWGN channel) so as to minimize the channel mean-squared distortion. The so-called zigzag mapping under maximum-likelihood (ML) decoding was known to be asymptotically optimal, but the problem of determining the optimal index assignment for any given signal-to-noise ratio (SNR) is still open. Based on a generalized version of the Hardy-Littlewood convolution-rearrangement inequality, we prove that the zigzag mapping under ML decoding is optimal for all SNRs. It is further proved that the same optimality results also hold under minimum mean-square-error (MMSE) decoding. Numerical results are presented to verify our optimality results and to demonstrate the performance gain of the optimal (M)-ary index assignment over the state-of-the-art binary counterpart for the case of (8)-PSK over the AWGN channel.


翻译:本文探讨了从( M) 量级到 ( M) 最大信标卡路里量度至( M) PSK 符号的优化非二进制指数分配问题,在概率密度功能下降后,通过对称性内分解器传送无内聚性符号,并添加噪音(如AWGN 频道),以最大限度地减少频道平均偏差。在最大似值解码(ML)下所谓的 zigzag 映射结果也被认为微不足道,但确定任何特定信号对噪音比率(SNR) 的最佳指数分配问题仍然有待解决。基于Hardy- Litlew 革命- 重新排列不平等的通用版本,我们证明ML 解码下的 zigzag 映射对所有 SNRIS 最合适。还进一步证明同样的最佳结果也存在于最低平均值对准质量- errrror( MMSE) 解码之下。 数字结果用于核实我们的最佳信号对音率比率( M) 并展示最佳K- NFAL- 格式对等 格式分配的硬度( M) 格式的硬质索引的硬质分析的硬质分析结果。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
52+阅读 · 2020年9月7日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员