The concept of a uniform interpolant for a quantifier-free formula from a given formula with a list of symbols, while well-known in the logic literature, has been unknown to the formal methods and automated reasoning community. This concept is precisely defined. Two algorithms for computing quantifier-free uniform interpolants of the theory of equality over uninterpreted symbols (EUF) endowed with a list of symbols to be eliminated are proposed. The first algorithm is non-deterministic and generates a uniform interpolant expressed as a disjunction of conjunctions of literals, whereas the second algorithm gives a compact representation of a uniform interpolant as a conjunction of Horn clauses. Both algorithms exploit efficient dedicated DAG representations of terms. Correctness and completeness proofs are supplied, using arguments combining rewrite techniques with model theory.
翻译:逻辑文献中广为人知,但正式方法和自动推理界却不知道,对某一公式中具有标志清单的量化无公式的统一内插概念,虽然在逻辑文献中也广为人知,但对正式方法和自动推理界却不为人所知。这个概念是准确界定的。两种计算对非解释符号(EUF)平等理论的无量化无计量统一内插法,并配有一份要删除的符号清单。第一个算法是非决定性的,产生一种统一的内插法,以不同字词的交汇形式表示,而第二种算法则以统一内插法作为合合合合合合合合合合合合合合合合合合合合的词。两种算法都利用高效率的专用DAG术语表达方式。提供了正确性和完整性证据,使用将重写技术与模型理论相结合的论据。