We study the log-rank conjecture from the perspective of incidence geometry and present a reformulation as well as a strengthening. The reformulation involves point sets in $\mathbb{R}^d$ that are covered in many ways by constant sized sets of parallel hyperplanes. We show that the log-rank conjecture is equivalent to the implication that all such configurations contain a subspace that accounts for a large fraction of the incidences, in the sense of containing a large fraction of the points and being contained in a large fraction of the hyperplanes. In other words the log-rank conjecture is equivalent to asserting that the point-hyperplane incidence graph for such configurations has a large complete bipartite subgraph. The strengthening of the log-rank conjecture comes from relaxing the requirements that the set of hyperplanes be parallel. Motivated by the connections above we revisit some well-studied questions in point-hyperplane incidence geometry and present some improvements. We give a simple probabilistic argument for the existence of complete bipartite subgraphs of density $\Omega(\epsilon^{2d}/d)$ in any $d$-dimensional configuration with incidence density $\epsilon$, matching previously known results qualitatively. We also improve an upper-bound construction of Apfelbaum and Sharir, yielding a configuration whose complete bipartite subgraphs are exponentially small and whose incidence density is $\Omega(1/\sqrt d)$.


翻译:我们从记事几何角度研究日志猜想, 并提出重写和强化。 重写包含以美元表示的点数, 以美元表示的点数数值, 以多种方式由固定大小的平行超高飞机覆盖。 我们显示, 日志点猜想相当于所有这类配置包含一个子空间, 占事件的很大一部分, 意思是包含点数的很大一部分, 并包含在超大平面的很大一部分 。 换句话说, 日志点测算等于声称, 此类配置的点超高平面事件数图有大量完整的双偏差分数值子数。 日志点猜想的加强来自放松要求, 要求超高平面的数据集是平行的。 我们在上面的连接下重新审视了点波段测算中的一些研究问题, 并显示了一些改进。 换句话说, 日志点测测测测测点的数值的精确度图图图与前平面平面的平面的平面结构。 我们给出了美元( Omqual) 的平面的平面的平面结构。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员