A notion of $t$-designs in the symmetric group on $n$ letters was introduced by Godsil in 1988. In particular $t$-transitive sets of permutations form a $t$-design. We derive lower bounds for $t=1$ and $t=2$ by a power moment method. For general $n,$ and $t\le n/2,$ we give a linear programming lower bound involving Charlier polynomials. For specific $n$ and $t=2,$ this bound is strong enough to show that sharply transitive $2$-designs do not exist for many composite integers $n.$ This implies the non-existence of projective planes of order $10,15,18,24,26,28,33,35.$ In general, based on numerical evidence, we conjecture that $t$-designs have size $n(n-1)\dots (n-t+1),$ or larger.
翻译:在对称组中,Godsil在1988年采用了美元字母的美元设计概念。特别是美元-透明调换组构成美元设计。我们用权时法得出美元=1美元和美元=2美元的下限。对于普通美元和美元/美元/2,我们给出了涉及Charlier多元米亚的线性编程下限。对于具体美元和美元=2,美元,这一约束足够强大,足以表明许多复合整数中不存在急剧中转的2美元设计。这意味着一般而言,根据数字证据,10,15,18,24,26,28,33,35.0美元的投影机不存在。我们推测,美元-投影机的大小为n(n-1美元)或更大(n-t+1美元)。