We introduce an extension of continuous wavelet theory that enables an efficient implementation of multiplicative operators in the coefficient space. In the new theory, the signal space is embedded in a larger abstract signal space -- the so called window-signal space. There is a canonical extension of the wavelet transform to an isometric isomorphism between the window-signal space and the coefficient space. Hence, the new framework is called a wavelet-Plancherel theory, and the extended wavelet transform is called the wavelet-Plancherel transform. Since the wavelet-Plancherel transform is an isometric isomorphism, any operation in the coefficient space can be pulled-back to an operation in the window-signal space. It is then possible to improve the computational complexity of methods that involve a multiplicative operator in the coefficient space, by performing all computations directly in the window-signal space. As one example application, we show how continuous wavelet multipliers (also called Calder\'{o}n-Toeplitz Operators), with polynomial symbols, can be implemented with linear complexity in the resolution of the 1D signal. As another example, we develop a framework for efficiently computing greedy sparse approximations to signals based on elements of continuous wavelet systems.
翻译:我们引入了连续波变理论的延伸, 使得在系数空间中高效地实施多复制操作员。 在新理论中, 信号空间嵌入一个更大的抽象信号空间 -- -- 所谓的窗口信号空间。 在窗口信号空间和系数空间之间, 有波盘转换为异数异形的星系扩展。 因此, 新框架被称为波盘- Plancherel 理论, 扩展波变称为波列- Plancherel 变换。 由于波列- Plancherel 变换是一个异形符号, 任何在系数空间的操作都可以被拉回到窗口信号空间的操作中。 然后有可能通过直接在窗口信号空间进行所有计算来改进在系数空间中涉及多复制操作者的方法的计算复杂性。 作为一个例子, 我们展示了波变变变变变的波变乘数( 也称为 Calder\' { {o}- Toplitz 操作员) 是如何用多数值符号执行的。 由于多数值符号, 系数空间的任何操作都可以被拉回到窗口信号空间的操作中。 这样的线性复杂度, 就可以在恒度模型的分辨率框架上, 。