This study investigated how social interaction among robotic agents changes dynamically depending on the individual belief of action intention. In a set of simulation studies, we examine dyadic imitative interactions of robots using a variational recurrent neural network model. The model is based on the free energy principle such that a pair of interacting robots find themselves in a loop, attempting to predict and infer each other's actions using active inference. We examined how regulating the complexity term to minimize free energy determines the dynamic characteristics of networks and interactions. When one robot trained with tighter regulation and another trained with looser regulation interact, the latter tends to lead the interaction by exerting stronger action intention, while the former tends to follow by adapting to its observations. The study confirms that the dyadic imitative interaction becomes successful by achieving a high synchronization rate when a leader and a follower are determined by developing action intentions with strong belief and weak belief, respectively.


翻译:这项研究调查了机器人代理人之间的社会互动如何根据个人对行动意图的信念而动态地变化。在一系列模拟研究中,我们用变异的经常性神经网络模型来研究机器人的模拟互动。模型基于自由能源原则,让一对互动机器人发现自己处于循环之中,试图用积极的推理来预测和推断彼此的行为。我们研究了如何调整复杂术语以尽量减少自由能源,决定网络和互动的动态特征。当一个机器人经过更严格的监管培训,另一个受过松散监管的机器人相互作用时,后者倾向于通过采取更强有力的行动意图来引导互动,而前者则倾向于根据自己的观察来跟踪。研究证实,当一个领导人和一个追随者分别以坚定的信念和软弱的信念来制定行动意图时,通过形成高度的同步率,模拟互动才能取得成功。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
78+阅读 · 2021年10月12日
【NYU-WESLEY MADDOX】贝叶斯神经网络教程,83页ppt
专知会员服务
60+阅读 · 2021年4月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员