Volume of fluid (VOF) methods are extensively used to track fluid interfaces in numerical simulations, and many VOF algorithms require that the interface be reconstructed geometrically. For this purpose, the Piecewise Linear Interface Construction (PLIC) technique is most frequently used, which for reasons of geometric complexity can be slow and difficult to implement. Here, we propose an alternative neural network based method called NPLIC to perform PLIC calculations. The model is trained on a large synthetic dataset of PLIC solutions for square, cubic, triangular, and tetrahedral meshes. We show that this data-driven approach results in accurate calculations at a fraction of the usual computational cost, and a single neural network system can be used for interface reconstruction of different mesh types.
翻译:流体体积( VOF) 方法被广泛用于在数字模拟中跟踪流体界面,许多 VOF 算法要求对界面进行几何重建。 为此,最经常地使用Pixwith线性界面构造(PLIC)技术,由于几何复杂性的原因,这种技术可能缓慢而难以实施。在这里,我们提议了另一种基于神经网络的替代方法,称为 NPLIC,用于进行PLIC计算。该模型经过培训,掌握关于正方形、立方体、三角形和四面网舍的PLIC解决方案的大型合成数据集。我们显示,这一数据驱动方法的结果是以通常计算成本的一小部分进行准确计算,并且可以使用单一的神经网络系统来重建不同网型的界面。