We consider a class of second-order Strang splitting methods for Allen-Cahn equations with polynomial or logarithmic nonlinearities. For the polynomial case both the linear and the nonlinear propagators are computed explicitly. We show that this type of Strang splitting scheme is unconditionally stable regardless of the time step. Moreover we establish strict energy dissipation for a judiciously modified energy which coincides with the classical energy up to $\mathcal O(\tau)$ where $\tau$ is the time step. For the logarithmic potential case, since the continuous-time nonlinear propagator no longer enjoys explicit analytic treatments, we employ a second order in time two-stage implicit Runge--Kutta (RK) nonlinear propagator together with an efficient Newton iterative solver. We prove a maximum principle which ensures phase separation and establish energy dissipation law under mild restrictions on the time step. These appear to be the first rigorous results on the energy dissipation of Strang-type splitting methods for Allen-Cahn equations.
翻译:我们对Allen-Cahn 等式的二阶分解方法进行了分类。 对于多线性或对数非线性非直线性传播器,我们考虑的是第二阶级的分解方法。对于多线性和非线性传播器,我们明确计算。我们表明,无论何时步骤,这种分解方案都无条件稳定。此外,我们为明智地修改能源制定了严格的能量分解方法,该方法与典型的能量最多达$\mathcal O(\tau)美元是时间步骤。对于对数性潜在情况,由于连续的非线性非线性传播器不再享有明确的解析处理方法,我们使用第二顺序的两阶段内隐性运行-库塔(Ringge-Kutta)非线性传播器和一个高效的牛顿迭接解答器。我们证明了确保阶段分解的最大原则,并在时间步骤的轻度限制下建立节能分解法。这似乎是Allen-Cah 等式分解方法的首次严格结果。