Lipreading has witnessed a lot of progress due to the resurgence of neural networks. Recent works have placed emphasis on aspects such as improving performance by finding the optimal architecture or improving generalization. However, there is still a significant gap between the current methodologies and the requirements for an effective deployment of lipreading in practical scenarios. In this work, we propose a series of innovations that significantly bridge that gap: first, we raise the state-of-the-art performance by a wide margin on LRW and LRW-1000 to 88.5% and 46.6%, respectively using self-distillation. Secondly, we propose a series of architectural changes, including a novel Depthwise Separable Temporal Convolutional Network (DS-TCN) head, that slashes the computational cost to a fraction of the (already quite efficient) original model. Thirdly, we show that knowledge distillation is a very effective tool for recovering performance of the lightweight models. This results in a range of models with different accuracy-efficiency trade-offs. However, our most promising lightweight models are on par with the current state-of-the-art while showing a reduction of 8.2x and 3.9x in terms of computational cost and number of parameters, respectively, which we hope will enable the deployment of lipreading models in practical applications.


翻译:由于神经网络的死灰复燃,唇印取得了许多进展。最近的工作重点是通过寻找最佳结构或改进一般化来改善业绩等方面,例如通过寻找最佳结构或改进一般化来改进业绩。然而,在目前的方法和在实际情景中有效部署唇读的要求之间仍然存在着巨大的差距。在这项工作中,我们提出了一系列创新,以大大缩小这一差距:首先,我们用自我蒸馏方法分别将LRW和LRW-1000和LRW-1000提高到88.5%和46.6%的宽度差提高最先进的业绩。第二,我们提出了一系列建筑变革,包括新颖的热源性静电动网络(DS-TCNN)头部,将计算成本压缩到最初模型的一小部分(已经相当高效的)。第三,我们表明,知识蒸馏是恢复轻量模型绩效的一个非常有效的工具。这导致一系列模型的精确效率取舍不同。然而,我们最有希望的轻量模型与目前的状况持平齐。同时,在实际部署成本和3.9的模型应用中,将分别显示8.2 和3.9的希望度参数的部署参数将降低。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Learning Discriminative Model Prediction for Tracking
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
59+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员