We prove that the most common filtering procedure for nodal discontinuous Galerkin (DG) methods is stable. The proof exploits that the DG approximation is constructed from polynomial basis functions and that integrals are approximated with high-order accurate Legendre-Gauss-Lobatto quadrature. The theoretical discussion serves to re-contextualize stable filtering results for finite difference methods into the DG setting. It is shown that the stability of the filtering is equivalent to a particular contractivity condition borrowed from the analysis of so-called transmission problems. As such, the temporal stability proof relies on the fact that the underlying spatial discretization of the problem possesses a semi-discrete bound on the solution. Numerical tests are provided to verify and validate the underlying theoretical results.


翻译:我们证明,节点不连续的Galerkin(DG)方法最常见的过滤程序是稳定的。证明利用了以下事实:DG近似值是根据多元基函数构建的,而集成物与高端准确的Tlunsre-Gauss-Lobatto二次曲线相近。理论讨论有助于将固定的过滤结果与有限差异方法重新连接到DG设置中。显示过滤的稳定性相当于从对所谓传输问题的分析中借用的某种合同性条件。因此,时间稳定性证据依赖于以下事实,即问题的基本空间分解具有对解决方案的半分解约束。提供了数值测试,以核实和验证基本理论结果。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
6+阅读 · 2019年12月30日
Single-frame Regularization for Temporally Stable CNNs
Arxiv
4+阅读 · 2019年1月14日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员