Lane changing and obstacle avoidance are one of the most important tasks in automated cars. To date, many algorithms have been suggested that are generally based on path trajectory or reinforcement learning approaches. Although these methods have been efficient, they are not able to accurately imitate a smooth path traveled by an expert driver. In this paper, a method is presented to mimic drivers' behavior using a convolutional neural network (CNN). First, seven features are extracted from a dataset gathered from four expert drivers in a driving simulator. Then, these features are converted from 1D arrays to 2D arrays and injected into a CNN. The CNN model computes the desired steering wheel angle and sends it to an adaptive PD controller. Finally, the control unit applies proper torque to the steering wheel. Results show that the CNN model can mimic the drivers' behavior with an R2-squared of 0.83. Also, the performance of the presented method was evaluated in the driving simulator for 17 trials, which avoided all traffic cones successfully. In some trials, the presented method performed a smoother maneuver compared to the expert drivers.


翻译:更换行道和避免障碍是自动汽车中最重要的任务之一。 至今,许多算法建议一般以路径轨迹或强化学习方法为基础。 虽然这些方法效率很高, 但无法准确模仿专家驾驶员的顺利行进路径。 在本文中, 展示了一种方法来模拟驾驶员的行为, 使用进化神经网络( CNN ) 。 首先, 从驾驶模拟器中的四名专家驾驶员收集的数据集中提取了七个特性。 然后, 这些特性从 1D 阵列转换为 2D 阵列, 并被注入CNN 。 CNN 模型计算了理想的方向盘角度, 并将其发送到适应性的 PD 控制器 。 最后, 控制器对方向盘应用了适当的节奏 。 结果显示CNN 模型可以模拟驾驶员的行为, R2- quareed 0. 0. 0. 0. 0. 83 。 此外, 在驾驶模拟器中评价了17 个试验中所采用的方法的性能, 避免了所有的交通锥形。 在一些试验中, 提出的方法比专家驾驶司机的驾驶员进行了更顺利的操作 。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月9日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员