We propose a collocation and quasi-collocation method for solving second order boundary value problems $L_2 y=f$, in which the differential operator $L_2$ can be represented in the product formulation, aiming mostly on singular and singularly perturbed boundary value problems. Seeking an approximating Canonical Complete Chebyshev spline $s$ by a collocation method leads to demand that $L_2s$ interpolates the function $f$. On the other hand, in quasi-collocation method we require that $L_2 s$ is equal to an approximation of $f$ by the Schoenberg operator. We offer the calculation of both methods based on the Green's function, and give their error bounds.


翻译:我们建议采用合用和准合用法解决第二顺序边界值问题,即2美元和2美元,其中差价操作员在产品配制中可以代表2美元,主要针对单一的和奇异的边界值问题。通过合用法寻找一种近似一致的Canonical 完整Chebyshev Spline $s,导致要求2美元乘以函数美元。另一方面,在准合用法中,我们要求2美元等于Schoenberg操作员的近似美元。我们提出两种方法的计算方法都以Green的功能为基础,并给出错误界限。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2020年3月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年10月8日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2020年3月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员