Learning hyperbolic embeddings for knowledge graph (KG) has gained increasing attention due to its superiority in capturing hierarchies. However, some important operations in hyperbolic space still lack good definitions, making existing methods unable to fully leverage the merits of hyperbolic space. Specifically, they suffer from two main limitations: 1) existing Graph Convolutional Network (GCN) methods in hyperbolic space rely on tangent space approximation, which would incur approximation error in representation learning, and 2) due to the lack of inner product operation definition in hyperbolic space, existing methods can only measure the plausibility of facts (links) with hyperbolic distance, which is difficult to capture complex data patterns. In this work, we contribute: 1) a Full Poincar\'{e} Multi-relational GCN that achieves graph information propagation in hyperbolic space without requiring any approximation, and 2) a hyperbolic generalization of Euclidean inner product that is beneficial to capture both hierarchical and complex patterns. On this basis, we further develop a \textbf{F}ully and \textbf{F}lexible \textbf{H}yperbolic \textbf{R}epresentation framework (\textbf{FFHR}) that is able to transfer recent Euclidean-based advances to hyperbolic space. We demonstrate it by instantiating FFHR with four representative KGC methods. Extensive experiments on benchmark datasets validate the superiority of our FFHRs over their Euclidean counterparts as well as state-of-the-art hyperbolic embedding methods.
翻译:用于知识图形( KG) 的学习超曲嵌入, 因其在捕捉等级学中的优势而日益受到越来越多的关注。 但是, 超曲空间中的一些重要操作仍然缺乏良好的定义, 这使得现有方法无法充分利用超曲空间的优点。 具体地说, 它们受到两大限制:(1) 超曲空间中现有的图形革命网络( GCN) 方法依赖于正切空间近似, 这将在演示学习中造成近似错误, 以及(2) 由于超曲空间缺乏内部产品操作定义, 现有方法只能用超曲距离测量事实的可视性( 链接), 很难捕捉到复杂的数据模式。 在这项工作中, 我们的贡献是:(1) 完全 Poincar\\ { e} 多重关系GCN 方法, 该方法可以在超曲空间空间中传播图形信息, 而不需要任何近似接近, 2) 超曲直的 Euclideidean 内产产品一般化, 有助于捕捉到分级和复杂模式。 在此基础上, 我们进一步开发一个高曲 { HR- 和高曲调 的 直径直径的 数据 = 流 流数据 流 流 流 流 流 流 显示 流 流 流 流 流 流 流 流 流 流 流 数据 向 流化 流化 流化 流化 流化 流化 显示