Advances in estimating heterogeneous treatment effects enable firms to personalize marketing mix elements and target individuals at an unmatched level of granularity, but feasibility constraints limit such personalization. In practice, firms choose which unique treatments to offer and which individuals to offer these treatments with the goal of maximizing profits: we call this the coarse personalization problem. We propose a two-step solution that makes segmentation and targeting decisions in concert. First, the firm personalizes by estimating conditional average treatment effects. Second, the firm discretizes by utilizing treatment effects to choose which unique treatments to offer and who to assign to these treatments. We show that a combination of available machine learning tools for estimating heterogeneous treatment effects and a novel application of optimal transport methods provides a viable and efficient solution. With data from a large-scale field experiment for promotions management, we find that our methodology outperforms extant approaches that segment on consumer characteristics or preferences and those that only search over a prespecified grid. Using our procedure, the firm recoups over 99.5% of its expected incremental profits under fully granular personalization while offering only five unique treatments. We conclude by discussing how coarse personalization arises in other domains.


翻译:在估算各种治疗效果方面的进展方面,各公司能够将营销组合要素和针对个人的个人个人化,达到不相称的颗粒度,但可行性的限制限制了这种个性化。在实践上,公司选择提供哪些独特的治疗方法,以及哪些个人提供这些治疗方法,以达到最大利润的目标:我们称之为粗略的个人化问题。我们提出一个两步解决办法,使分解和有针对性地作出一致的决定。首先,公司个人化办法是估计有条件的平均治疗效果。第二,公司通过利用治疗效果来选择提供哪些独特的治疗方法,以及由谁分配这些治疗方法。我们表明,现有机器学习工具的组合是用来估计不同治疗效果和采用最佳运输方法的新应用,提供了一种可行和有效的解决办法。我们发现,利用大规模实地实验的数据来进行促进管理,我们的方法超越了有关消费者特点或偏好以及只对预定的网格进行搜索的延伸方法。利用我们的程序,在完全颗粒个人化下对预期的递增利润的99.5%以上进行重新组合。我们通过只提供五种独特的治疗,我们最后通过讨论个人化如何在其它领域形成共同分析个人化的方法来得出结论。</s>

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员