This study explores the use of Machine Learning (ML) in the field of Human Resources Management (HRM) alternatively, Human Capital Management (HCM), through a unique approach of employing partial differential equations (PDEs) to address the complexity of anthropomorphic systems. The mathematical representation offers a robust evaluation of human activities and demonstrates the potential of Bayesian-based machine learning techniques for visual representation in predictive analytics applications. This study is a part of Scientific Machine Learning (SciML), a method that uses partial differential equations to represent physical systems and domain-specific data. In this text, the data are from non-stationary environments with polymorphic uncertainty. The hypotheses tested in this study are: H1a (null hypothesis) states that the structure of a covariate does not change significantly over time (t) given a set of initial conditions, while H1b (alternative hypothesis) states that the structure of a covariate changes significantly over time (t) given a set of initial conditions. H2a (null hypothesis) states that the conditions do not significantly impact the relationship of the covariates to one another, and H2b (alternative hypothesis) states that the conditions significantly impact the relationship of the covariates to one another. The models use linear regression analysis with targeted productivity as the dependent variable and date as the independent variable. The results show that the relationship between targeted productivity and date is statistically significant, providing evidence to support H2b and suggesting that the conditions do significantly impact the relationship of the covariates to one another. This study highlights the importance of considering the impact of conditions on the relationship between covariates when analyzing data that changes over time.
翻译:这项研究探索了在人力资源管理(HRM)领域,即人力资本管理(HCM)领域使用机器学习(ML)的方法,通过采用局部差异方程(PDEs)的独特方法,在人力资源管理领域(HRM),即人力资本管理(HCM),通过采用局部差异方程(PDEs)来应对人类形态系统的复杂性。数学代表对人的活动进行了有力的评估,并展示了巴耶斯机器学习技术在预测分析应用中视觉表现的潜力。这项研究是科学机学习(SciML)的一部分,这种方法使用部分差异方程来代表物理系统和特定领域的数据。在本文本中,数据来自非静止环境,具有多变的不确定性。本研究测试的假设是:H1a(Nell 假设) 显示,对于人类活动活动的结构不会随着时间的变化而发生重大变化。 H1(备选假设) 假设表明,从一个日期到另一个日期的统计结果的数值分析,从一个日期到另一个日期的统计结果,从一个日期到另一个日期的数值分析,从一个日期到另一个日期的数值分析,从一个日期到一个日期的变变变变数关系,从一个日期到另一个日期到另一个日期的数值分析,从一个日期到一个日期到一个日期到一个日期的数值分析。</s>