This study explores the use of Machine Learning (ML) in the field of Human Resources Management (HRM) alternatively, Human Capital Management (HCM), through a unique approach of employing partial differential equations (PDEs) to address the complexity of anthropomorphic systems. The mathematical representation offers a robust evaluation of human activities and demonstrates the potential of Bayesian-based machine learning techniques for visual representation in predictive analytics applications. This study is a part of Scientific Machine Learning (SciML), a method that uses partial differential equations to represent physical systems and domain-specific data. In this text, the data are from non-stationary environments with polymorphic uncertainty. The hypotheses tested in this study are: H1a (null hypothesis) states that the structure of a covariate does not change significantly over time (t) given a set of initial conditions, while H1b (alternative hypothesis) states that the structure of a covariate changes significantly over time (t) given a set of initial conditions. H2a (null hypothesis) states that the conditions do not significantly impact the relationship of the covariates to one another, and H2b (alternative hypothesis) states that the conditions significantly impact the relationship of the covariates to one another. The models use linear regression analysis with targeted productivity as the dependent variable and date as the independent variable. The results show that the relationship between targeted productivity and date is statistically significant, providing evidence to support H2b and suggesting that the conditions do significantly impact the relationship of the covariates to one another. This study highlights the importance of considering the impact of conditions on the relationship between covariates when analyzing data that changes over time.


翻译:这项研究探索了在人力资源管理(HRM)领域,即人力资本管理(HCM)领域使用机器学习(ML)的方法,通过采用局部差异方程(PDEs)的独特方法,在人力资源管理领域(HRM),即人力资本管理(HCM),通过采用局部差异方程(PDEs)来应对人类形态系统的复杂性。数学代表对人的活动进行了有力的评估,并展示了巴耶斯机器学习技术在预测分析应用中视觉表现的潜力。这项研究是科学机学习(SciML)的一部分,这种方法使用部分差异方程来代表物理系统和特定领域的数据。在本文本中,数据来自非静止环境,具有多变的不确定性。本研究测试的假设是:H1a(Nell 假设) 显示,对于人类活动活动的结构不会随着时间的变化而发生重大变化。 H1(备选假设) 假设表明,从一个日期到另一个日期的统计结果的数值分析,从一个日期到另一个日期的统计结果,从一个日期到另一个日期的数值分析,从一个日期到另一个日期的数值分析,从一个日期到一个日期的变变变变数关系,从一个日期到另一个日期到另一个日期的数值分析,从一个日期到一个日期到一个日期到一个日期的数值分析。</s>

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【MIT干货课程】医疗健康领域的机器学习
专知
1+阅读 · 2022年5月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
22+阅读 · 2019年11月24日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【MIT干货课程】医疗健康领域的机器学习
专知
1+阅读 · 2022年5月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员