Diffusion models have been remarkably successful in data synthesis. Such successes have also driven diffusion models to apply to sensitive data, such as human face data, but this might bring about severe privacy concerns. In this work, we systematically present the first privacy study about property inference attacks against diffusion models, in which adversaries aim to extract sensitive global properties of the training set from a diffusion model, such as the proportion of the training data for certain sensitive properties. Specifically, we consider the most practical attack scenario: adversaries are only allowed to obtain synthetic data. Under this realistic scenario, we evaluate the property inference attacks on different types of samplers and diffusion models. A broad range of evaluations shows that various diffusion models and their samplers are all vulnerable to property inference attacks. Furthermore, one case study on off-the-shelf pre-trained diffusion models also demonstrates the effectiveness of the attack in practice. Finally, we propose a new model-agnostic plug-in method PriSampler to mitigate the property inference of diffusion models. PriSampler can be directly applied to well-trained diffusion models and support both stochastic and deterministic sampling. Extensive experiments illustrate the effectiveness of our defense and it makes adversaries infer the proportion of properties as close as random guesses. PriSampler also shows its significantly superior performance to diffusion models trained with differential privacy on both model utility and defense performance.
翻译:暂无翻译