Recent research has shown that rationales, or step-by-step chains of thought, can be used to improve performance in multi-step reasoning tasks. We reconsider rationale-augmented prompting for few-shot in-context learning, where (input -> output) prompts are expanded to (input, rationale -> output) prompts. For rationale-augmented prompting we demonstrate how existing approaches, which rely on manual prompt engineering, are subject to sub-optimal rationales that may harm performance. To mitigate this brittleness, we propose a unified framework of rationale-augmented ensembles, where we identify rationale sampling in the output space as the key component to robustly improve performance. This framework is general and can easily be extended to common natural language processing tasks, even those that do not traditionally leverage intermediate steps, such as question answering, word sense disambiguation, and sentiment analysis. We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches--including standard prompting without rationales and rationale-based chain-of-thought prompting--while simultaneously improving interpretability of model predictions through the associated rationales.
翻译:最近的研究显示,理论依据或逐步思维链可以用来改进多步推理任务的业绩。我们重新考虑理由强化的理由框架,在(投入 - > 产出)刺激扩大到(投入,理由 - > 产出)刺激的情况下,我们重新考虑理由强化的理由框架,促使进行少量的文字内学习,将(投入 - > 产出)刺激扩大到(投入,理由 - > 产出)刺激。关于理由强化,我们证明依靠人工快速工程的现有方法如何受到可能损害业绩的亚优性理论基础的制约。为了减轻这种缺陷,我们提议了一个理论强化的合并统一框架,我们在此框架内确定产出空间中的理由抽样是大力改进业绩的关键组成部分。这个框架是一般性的,很容易扩展到通用自然语言处理任务,即使是那些传统上不利用中间步骤(例如问题回答、字感脱节和情绪分析)的,我们证明,理由强化的组合比现有的迅速采用的方法(包括标准的快速加速推理和基于理论的连锁)推理推理,同时通过快速改进解释推推推理的推理的推理推理的推性推理的推理推性推理推论预测更准性更准性更精确。