This paper considers adaptive radar electronic counter-counter measures (ECCM) to mitigate ECM by an adversarial jammer. Our ECCM approach models the jammer-radar interaction as a Principal Agent Problem (PAP), a popular economics framework for interaction between two entities with an information imbalance. In our setup, the radar does not know the jammer's utility. Instead, the radar learns the jammer's utility adaptively over time using inverse reinforcement learning. The radar's adaptive ECCM objective is two-fold (1) maximize its utility by solving the PAP, and (2) estimate the jammer's utility by observing its response. Our adaptive ECCM scheme uses deep ideas from revealed preference in micro-economics and principal agent problem in contract theory. Our numerical results show that, over time, our adaptive ECCM both identifies and mitigates the jammer's utility.
翻译:本文探讨了通过对抗干扰器减少企业内容的适应性雷达电子对抗措施(ECCM ) 。 我们的ECCM 方法将干扰雷达-雷达互动作为主要代理问题(PAP ) 模型,这是两个实体在信息不平衡的情况下相互作用的流行经济学框架。 在我们的设置中,雷达并不了解干扰器的效用。 相反,雷达利用反向强化学习,在一段时间里适应性地学习干扰器的效用。雷达的适应性ECM 目标有双重:(1) 通过解决PAP,最大限度地发挥其效用;(2) 通过观察其反应,估计干扰器的效用。我们的适应性ECCM 计划利用了显露的微观经济偏好和合同理论中主要代理问题的深刻想法。我们的数字结果显示,随着时间的推移,我们的适应性ECM 发现并减轻了干扰器的效用。