In this study, we present a meta-learning model to adapt the predictions of the network's capacity between viewers who participate in a live video streaming event. We propose the MELANIE model, where an event is formulated as a Markov Decision Process, performing meta-learning on reinforcement learning tasks. By considering a new event as a task, we design an actor-critic learning scheme to compute the optimal policy on estimating the viewers' high-bandwidth connections. To ensure fast adaptation to new connections or changes among viewers during an event, we implement a prioritized replay memory buffer based on the Kullback-Leibler divergence of the reward/throughput of the viewers' connections. Moreover, we adopt a model-agnostic meta-learning framework to generate a global model from past events. As viewers scarcely participate in several events, the challenge resides on how to account for the low structural similarity of different events. To combat this issue, we design a graph signature buffer to calculate the structural similarities of several streaming events and adjust the training of the global model accordingly. We evaluate the proposed model on the link weight prediction task on three real-world datasets of live video streaming events. Our experiments demonstrate the effectiveness of our proposed model, with an average relative gain of 25% against state-of-the-art strategies. For reproduction purposes, our evaluation datasets and implementation are publicly available at https://github.com/stefanosantaris/melanie


翻译:在本研究中,我们提出了一个元学习模型,以适应参加现场视频流活动的观众对网络能力的预测。我们建议了MELANIE模型,将活动发展成Markov决策程序,在强化学习任务方面进行元学习。我们将新活动作为一个任务来考虑,设计了一个演员-评论学习计划,以计算估计观众高带宽连接的最佳政策。为了确保在活动期间快速适应观众之间的新连接或变化,我们根据观众关系奖励/传输的Kullback-Leiper差异,实施一个优先重播记忆缓冲。此外,我们采用了一个模型-不可知的元学习框架,从过去的活动中生成一个全球模型。由于观众很少参加一些活动,我们面临的挑战在于如何计算不同事件结构相似性;为了解决这一问题,我们设计了一个图形信号缓冲,以计算若干流活动的结构性相似性,并相应调整全球模型的现场模型。我们评估了关于将观众的奖赏/翻版连接起来的模型,我们在三个现实世界数据系统上,一个相对重量的模型,用来显示我们现有的25项平均数据统计的模型。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2021年5月18日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
6+阅读 · 2019年7月29日
Arxiv
6+阅读 · 2018年12月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
3+阅读 · 2021年5月18日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
6+阅读 · 2019年7月29日
Arxiv
6+阅读 · 2018年12月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
8+阅读 · 2018年7月12日
Top
微信扫码咨询专知VIP会员