We propose GANav, a novel group-wise attention mechanism to identify safe and navigable regions in off-road terrains and unstructured environments from RGB images. Our approach classifies terrains based on their navigability levels using coarse-grained semantic segmentation. Our novel group-wise attention loss enables any backbone network to explicitly focus on the different groups' features with low spatial resolution. Our design leads to efficient inference while maintaining a high level of accuracy compared to existing SOTA methods. Our extensive evaluations on the RUGD and RELLIS-3D datasets shows that GANav achieves an improvement over the SOTA mIoU by 2.25-39.05% on RUGD and 5.17-19.06% on RELLIS-3D. We interface GANav with a deep reinforcement learning-based navigation algorithm and highlight its benefits in terms of navigation in real-world unstructured terrains. We integrate our GANav-based navigation algorithm with ClearPath Jackal and Husky robots, and observe an increase of 10% in terms of success rate, 2-47% in terms of selecting the surface with the best navigability and a decrease of 4.6-13.9% in trajectory roughness. Further, GANav reduces the false positive rate of forbidden regions by 37.79%. Code, videos, and a full technical report are available at https://gamma.umd.edu/offroad/.
翻译:我们建议GANav, 这是一种新颖的团体关注机制, 目的是从 RGB 图像中找出在越野地形和无结构环境中安全和通航的区域。 我们的方法将地形分类, 使用粗粗的测深的语义分解法。 我们的新型群体关注损失使任何骨干网络能够以低空间分辨率明确关注不同群体的特征。 我们的设计导致高效的推断,同时保持与现有的SOTA方法相比的高度准确性。 我们对RUGD和RELLIS-3D数据集的广泛评估表明, GANav在SOTA mIoU上取得了2.25-39.05 % 的SOTA mIOU和5.17-19.06%的导航水平上的改善。 我们把GANav与深度强化的基于学习的导航算法连接起来,并突出其在现实世界无结构的地形导航方面的好处。 我们把我们的GANavd导航算法与Clearpath Jackal和Husky 机器人结合起来, 并观察到在成功率方面增加了10%, 在RUGGGGGGGGGDDDDDD上选择了4.9%的轨迹上, 和正轨能进一步降低了2%-47%。