The randomized sparse Kaczmarz method was recently proposed to recover sparse solutions of linear systems. In this work, we introduce a greedy variant of the randomized sparse Kaczmarz method by employing the sampling Kaczmarz-Motzkin method, and prove its linear convergence in expectation with respect to the Bregman distance in the noiseless and noisy cases. This greedy variant can be viewed as a unification of the sampling Kaczmarz-Motzkin method and the randomized sparse Kaczmarz method, and hence inherits the merits of these two methods. Numerically, we report a couple of experimental results to demonstrate its superiority
翻译:最近提出了随机稀疏的卡茨马尔兹方法,以恢复线性系统稀疏的解决方案。在这项工作中,我们采用了随机稀疏的卡茨马尔兹方法的贪婪变方,采用了抽样的卡茨马尔兹-莫茨金方法,并证明在无噪音和吵闹的案例中,它与布雷格曼距离的线性趋同。这一贪婪变方可以被视为对取样的卡茨马尔兹-莫茨金方法和随机稀疏的卡茨马尔兹方法的统一,从而继承了这两种方法的优点。