To provide click simulation or relevance estimation based on users' implicit interaction feedback, click models have been much studied during recent years. Most click models focus on user behaviors towards a single list. However, with the development of user interface (UI) design, the layout of displayed items on a result page tends to be multi-block (i.e., multi-list) style instead of a single list, which requires different assumptions to model user behaviors more accurately. There exist click models for multi-block pages in desktop contexts, but they cannot be directly applied to mobile scenarios due to different interaction manners, result types and especially multi-block presentation styles. In particular, multi-block mobile pages can normally be decomposed into interleavings of basic vertical blocks and horizontal blocks, thus resulting in typically F-shape forms. To mitigate gaps between desktop and mobile contexts for multi-block pages, we conduct a user eye-tracking study, and identify users' sequential browsing, block skip and comparison patterns on F-shape pages. These findings lead to the design of a novel F-shape Click Model (FSCM), which serves as a general solution to multi-block mobile pages. Firstly, we construct a directed acyclic graph (DAG) for each page, where each item is regarded as a vertex and each edge indicates the user's possible examination flow. Secondly, we propose DAG-structured GRUs and a comparison module to model users' sequential (sequential browsing, block skip) and non-sequential (comparison) behaviors respectively. Finally, we combine GRU states and comparison patterns to perform user click predictions. Experiments on a large-scale real-world dataset validate the effectiveness of FSCM on user behavior predictions compared with baseline models.


翻译:为了根据用户的隐含互动反馈提供模拟或相关估计,近年来对模型进行了大量研究。大多数模型都侧重于用户对单一列表的行为。但是,随着用户界面(UI)设计,结果页面上显示项目的布局倾向于多块(即多列表)风格,而不是单一列表,这就要求用不同的假设来更准确地模拟用户行为。在桌面背景下存在多块页面的点击模型,但由于互动方式、结果类型和特别是多块演示风格不同,这些模型无法直接应用于移动情景。特别是,多块的递增比率块移动页面通常可以分解成基本垂直区块和水平区块的内列模式,从而形成典型的Fshape格式。为了缩小多块页面的桌面和移动环境之间的差距,我们进行了用户眼跟踪研究,并确定了F-shape页面上的用户顺序浏览、区块跳和比较模式。这些发现导致设计新型的Fshape 缩略图模型(FS-shapele) (FSLCMM),多块的用户滚动模型可以用来对每个用户模型进行比较,我们每个用户的滚动模型进行滚动分析。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
16+阅读 · 2021年1月27日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员