Flight-related health effects are a growing area of environmental health research with most work examining the concurrent impact of in-flight exposure on cardiac health. One understudied area is on the post-flight effects of in-flight exposures. Studies investigating the health effects of flight often collect a range of repeatedly sampled, time-varying exposure-related measurements under both crossover and longitudinal sampling designs. A natural choice to model the relationship between these lagged exposures and post-flight outcomes is the distributed lag model (DLM). However, longitudinal DLMs are a lightly studied area. Thus, we propose a class of models for analyzing longitudinal DLMs where the random effects can incorporate more general structures -- including random lags -- that arise from repeatedly sampling lagged exposures. We develop variational Bayesian algorithms to estimate model components under differing random effect structures, derive a novel variational AIC for model selection between these structures, and show the converged variational estimates can be used to test for the difference between two semiparametric curves under the crossover design. We then analyze the impact of in-flight, lagged exposure-related physiological effects on post-flight heart health. We also perform simulation studies to evaluate the operating characteristics of our models and inference procedures.


翻译:与飞行有关的健康影响是环境健康研究的一个日益扩大的领域,大多数工作是研究飞行中接触对心脏健康的同时影响,一个研究不足的领域是飞行中接触对飞行后影响的影响。研究飞行对健康的影响往往收集一系列反复抽样的、时间变化的与接触有关的测量,在交叉和纵向采样设计下进行,这些延迟接触和飞行后结果之间的一种自然选择是分布式滞后模型(DLM)。然而,纵向DLMS是一个研究浅度的区域。因此,我们建议了一组模型,用于分析长纵向DLMS,随机影响可以包括反复取样延迟接触所产生的更一般的结构 -- -- 包括随机滞后 -- -- 。我们开发了变异的巴耶斯算法,以估计不同随机效应结构下的模型组成部分,得出这些结构之间模型选择的新的变异性AIC,并表明可使用趋同的变性估计值来测试交叉设计下的两种半参数曲线之间的差异。我们随后还分析了飞行中飞行中、滞后的接触相关生理特性对飞行后程序的影响。我们还评估了飞行中与飞行后的健康模型。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员