The total uncertainty measurement of basic probability assignment (BPA) in evidence theory has always been an open issue. Although many scholars have put forward various measures and requirements of bodies of evidence (BoE), none of them are widely recognized. So in order to express the uncertainty in evidence theory, transforming basic probability assignment (BPA) into probability distribution is a widely used method, but all the previous methods of probability transformation are directly allocating focal elements in evidence theory to their elements without specific transformation process. Based on above, this paper simulates the pignistic probability transformation (PPT) process based on the idea of fractal, making the PPT process and the information volume lost during transformation more intuitive. Then apply this idea to the total uncertainty measure in evidence theory. A new belief entropy called Fractal-based (FB) entropy is proposed, which is the first time to apply fractal idea in belief entropy. After verification, the new entropy is superior to all existing total uncertainty measurements.


翻译:证据理论中基本概率分配(BPA)的全面不确定性测量始终是一个未决问题。虽然许多学者提出了各种证据(BoE)的计量和要求,但其中没有一个得到了广泛承认。因此,为了表达证据理论的不确定性,将基本概率分配(BPA)转化为概率分布是一种广泛使用的方法,但所有先前的概率转换方法都直接将证据理论中的焦点元素与其元素分配,而没有具体的转化过程。基于以上,本文模拟了基于分形概念的光概率转换(PPPT)过程,使PPPT过程和在转换过程中丢失的信息量更加直观。然后在证据理论中将这一想法应用到整个不确定性计量中。提出了一种称为基于Factal(FB)的新的信灵的加密,这是首次在信念中应用折变方概念。根据以上,新的正本优于所有现有的全部不确定性测量。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
31+阅读 · 2020年5月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员