We characterize mutual information as the unique map on ordered pairs of random variables satisfying a set of axioms similar to those of Faddeev's characterization of the Shannon entropy. There is a new axiom in our characterization however which has no analogue for Shannon entropy, based on the notion of a Markov triangle, which may be thought of as a composition of communication channels for which conditional entropy acts functorially. Our proofs are coordinate-free in the sense that no logarithms appear in our calculations.


翻译:我们把相互信息描述为一对随机变量的独一无二的地图,这些随机变量符合一套与Faddeev对香农通则的特征相似的通则。 然而,我们的特性中有一个新的通则,根据Markov三角形的概念,它没有香农通则的类比,可被视为一种通信渠道的构成,而这种通信渠道是有条件的通则行为交织的。我们的证据是没有协调的,因为我们的计算中没有对数。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
专知会员服务
51+阅读 · 2020年12月14日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
论文浅尝 | 多标签分类中的元学习
开放知识图谱
6+阅读 · 2019年9月25日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月20日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
专知会员服务
51+阅读 · 2020年12月14日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
论文浅尝 | 多标签分类中的元学习
开放知识图谱
6+阅读 · 2019年9月25日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员