Consider a variant of Tetris played on a board of width $w$ and infinite height, where the pieces are axis-aligned rectangles of arbitrary integer dimensions, the pieces can only be moved before letting them drop, and a row does not disappear once it is full. Suppose we want to follow a greedy strategy: let each rectangle fall where it will end up the lowest given the current state of the board. To do so, we want a data structure which can always suggest a greedy move. In other words, we want a data structure which maintains a set of $O(n)$ rectangles, supports queries which return where to drop the rectangle, and updates which insert a rectangle dropped at a certain position and return the height of the highest point in the updated set of rectangles. We show via a reduction to the Multiphase problem [P\u{a}tra\c{s}cu, 2010] that on a board of width $w=\Theta(n)$, if the OMv conjecture [Henzinger et al., 2015] is true, then both operations cannot be supported in time $O(n^{1/2-\epsilon})$ simultaneously. The reduction also implies polynomial bounds from the 3-SUM conjecture and the APSP conjecture. On the other hand, we show that there is a data structure supporting both operations in $O(n^{1/2}\log^{3/2}n)$ time on boards of width $n^{O(1)}$, matching the lower bound up to a $n^{o(1)}$ factor.
翻译:考虑在宽度 $w$ 和无限高度的板块上播放的 Tetris 变量, 在这样的板板上, 碎片是轴对齐的矩形, 碎片只能在让它们下降之前被移动, 并且一行不会消失。 假设我们想要遵循贪婪的战略 : 允许每个矩形下降, 其结局会根据董事会的当前状态而成为最低的 。 要做到这一点, 我们想要一个数据结构, 它总是可以显示贪婪的动作 。 换句话说, 我们需要一个数据结构, 维持一套 $ (n) 的矩形, 支持返回矩形的位置查询, 并且更新, 在一个特定的位置插入矩形, 并返回经更新的矩形结构中的最高点的高度。 我们通过减少多阶段问题来显示 $w{ a} Theta( n) $ (n) $ (n) $ (n) $ (n) $ (n) $ (n) =} 美元 。 如果 Ov 调调调调 [Hengererger 和 al. 2015] 支持调调调调调调调调的查询, 和 更新一个时间, 那么 两次操作都无法同时支持O\\\\\\\\\\\\\\\\\\\\\\ ro) a cal yal max laual laual a trual lection a d) a a a a lexxxxxxxxxxxx