This paper introduces DCT-Net, a novel image translation architecture for few-shot portrait stylization. Given limited style exemplars ($\sim$100), the new architecture can produce high-quality style transfer results with advanced ability to synthesize high-fidelity contents and strong generality to handle complicated scenes (e.g., occlusions and accessories). Moreover, it enables full-body image translation via one elegant evaluation network trained by partial observations (i.e., stylized heads). Few-shot learning based style transfer is challenging since the learned model can easily become overfitted in the target domain, due to the biased distribution formed by only a few training examples. This paper aims to handle the challenge by adopting the key idea of "calibration first, translation later" and exploring the augmented global structure with locally-focused translation. Specifically, the proposed DCT-Net consists of three modules: a content adapter borrowing the powerful prior from source photos to calibrate the content distribution of target samples; a geometry expansion module using affine transformations to release spatially semantic constraints; and a texture translation module leveraging samples produced by the calibrated distribution to learn a fine-grained conversion. Experimental results demonstrate the proposed method's superiority over the state of the art in head stylization and its effectiveness on full image translation with adaptive deformations.
翻译:本文介绍了DCT- Net, 这是用于少见肖像化的新型图像翻译结构。 由于风格化的展示模型有限, 新架构可以产生高质量的风格传输结果, 且具有高度综合高异性内容的先进能力, 并具有处理复杂场景( 例如, 隐蔽和附件) 的强烈通用性。 此外, 该文件通过一个经过部分观察( 石化头) 培训的优雅评价网络, 能够实现全体图像翻译。 少见的基于学习的风格传输具有挑战性, 因为学习的模型很容易在目标域中过度适应, 因为只有几个培训范例形成的偏差分布。 该文件的目的是通过采用“ 先校正、 后翻译” 的关键理念, 并探索以本地为焦点翻译为主的强化全球结构。 具体地说, 拟议的 DCT- Net 由三个模块组成: 内容调整器, 将强力从源照片中借用到目标样本内容的分布; 几何测法扩展模块, 使用亲近转换来释放空间语系限制; 文本翻译模块, 将优化地转换为高级图像。 将模型升级, 升级后, 升级后, 将模型转换为升级后升级为升级后, 升级后升级为升级后升级为升级法, 格式, 升级法将模型, 升级为升级为升级成正变正变。