The symmetry of a Kripke structure $\mathcal{M}$ has been exploited to replace a model check of $\mathcal{M}$ by a model check of the potentially smaller structure $\mathcal{N}$ obtained as the quotient of $\mathcal{M}$ by its symmetry group $G$. We extend previous work to model repair: identify a substructure that satisfies a given temporal logic formula. We show that the substructures of $\mathcal{M}$ that are preserved by $G$ form a lattice that maps to the substructure lattice of $\mathcal{N}$. We also show the existence of a monotone Galois connection between the lattice of substructures of $\mathcal{N}$ and the lattice of substructures of $\mathcal{M}$ that are "maximal" w.r.t. an appropriately defined group action of $G$ on $\mathcal{M}$. These results enable us to repair $\mathcal{N}$ and then to lift the repair to $\mathcal{M}$. We can thus repair symmetric finite-state concurrent programs by repairing the corresponding $\mathcal{N}$, thereby effecting program repair while avoiding state-explosion.
翻译:Kripke 结构的对称 $\ mathcal{ M} $\ mathcal{ M} $ 用于替换 $\ mathcal{ M} 美元 的模型检查 。 我们将先前的工作扩大到模型修理 : 确定一个符合特定时间逻辑公式的子结构 。 我们显示, $\ mathcal{ M} $ 的子结构 以 $G$ 的形式保存, 将 $\ mathcal{ m} 美元 替换为 $\ mathcal{ N} 美元 的 模型检查 。 我们还显示, $\ mathcal{ N} 的子结构的对称( $macal{ N} 美元) 和 $macal 的子结构的对称 。 这些结果使我们得以修复 $\\ malma} max 程序, 而我们能够修复 maxal ma 。