We study how group symmetry helps improve data efficiency and generalization for end-to-end differentiable planning algorithms, specifically on 2D robotic path planning problems: navigation and manipulation. We first formalize the idea from Value Iteration Networks (VINs) on using convolutional networks for path planning, because it avoids explicitly constructing equivalence classes and enable end-to-end planning. We then show that value iteration can always be represented as some convolutional form for (2D) path planning, and name the resulting paradigm Symmetric Planner (SymPlan). In implementation, we use steerable convolution networks to incorporate symmetry. Our algorithms on navigation and manipulation, with given or learned maps, improve training efficiency and generalization performance by large margins over non-equivariant counterparts, VIN and GPPN.
翻译:我们研究组群对称如何帮助提高数据效率和一般化,用于最终到最终的不同规划算法,特别是2D机器人路径规划问题:导航和操纵。我们首先将价值迭代网络(VINs)关于利用革命网络进行路径规划的想法正式化,因为它避免了明确构建等同类,并促成端到终端的规划。然后我们表明,价值迭代总是可以作为(2D)路径规划的某种累进形式来代表,并命名由此形成的范式对称规划仪(SymPlan ) 。 在执行过程中,我们使用可导航的共振网络来纳入对称性。我们在导航和操纵方面的算法,用提供或学习过的地图,提高与非等同对等方、VIN和GPN相比的较大边距的培训效率和一般化性表现。