Camera relocalization has various applications in autonomous driving. Previous camera pose regression models consider only ideal scenarios where there is little environmental perturbation. To deal with challenging driving environments that may have changing seasons, weather, illumination, and the presence of unstable objects, we propose RobustLoc, which derives its robustness against perturbations from neural differential equations. Our model uses a convolutional neural network to extract feature maps from multi-view images, a robust neural differential equation diffusion block module to diffuse information interactively, and a branched pose decoder with multi-layer training to estimate the vehicle poses. Experiments demonstrate that RobustLoc surpasses current state-of-the-art camera pose regression models and achieves robust performance in various environments. Our code is released at: https://github.com/sijieaaa/RobustLoc
翻译:相机重定位在自动驾驶领域中有着广泛的应用。以往的相机姿态回归模型只考虑了理想情况下即几乎没有环境干扰的情形。为了处理在驾驶时具有不同季节、天气、光照和不稳定交通物体等复杂的驾驶环境,本文提出了一种名为RobustLoc的模型。RobustLoc利用神经微分方程来提高模型对于异常情况的鲁棒性。我们的模型包括利用卷积神经网络提取多角度图像特征、采用鲁棒神经微分方程扩散块模块实现交互式信息扩散和使用多层训练的分支姿态解码器来估计车辆姿态。实验证明 RobustLoc 超越了当下基于相机姿态回归的最新模型,在各种复杂环境中都能带来鲁棒的性能。我们的代码已公开在 https://github.com/sijieaaa/RobustLoc。