Federated averaging (FedAvg) is a popular federated learning (FL) technique that updates the global model by averaging local models and then transmits the updated global model to devices for their local model update. One main limitation of FedAvg is that the average-based global model is not necessarily better than local models in the early stage of the training process so that FedAvg might diverge in realistic scenarios, especially when the data is non-identically distributed across devices and the number of data samples varies significantly from device to device. In this paper, we propose a new FL technique based on simulated annealing. The key idea of the proposed technique, henceforth referred to as \textit{simulated annealing-based FL} (SAFL), is to allow a device to choose its local model when the global model is immature. Specifically, by exploiting the simulated annealing strategy, we make each device choose its local model with high probability in early iterations when the global model is immature. From extensive numerical experiments using various benchmark datasets, we demonstrate that SAFL outperforms the conventional FedAvg technique in terms of the convergence speed and the classification accuracy.


翻译:联邦平均(FedAvg)是一种广受欢迎的联邦学习(FL)技术,它通过平均当地模型来更新全球模型,然后将更新的全球模型传送到本地模型更新的装置。FedAvg的一个主要限制是,在培训进程的早期阶段,基于平均的全球模型不一定比基于培训过程早期阶段的当地模型好,这样FedAvg在现实的假设中可能会有差异,特别是当数据在各种设备之间不明显地分布,数据样本数量在设备之间差异很大时。在本文中,我们提出一个新的基于模拟肛交的新的FL技术。拟议技术的主要构想,即今后称为\ textit{模拟以射线为基础的FL}(SAFL),是让一个设备在全球模型不成熟时选择其本地模型。具体地说,我们利用模拟的反射战略,使每个装置选择其本地模型的概率很高,当全球模型不成熟时,我们从使用各种基准数据集进行广泛的数字实验中,我们证明SAFL在常规的分类中超过了常规的精确性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
10+阅读 · 2021年3月30日
Privacy-Preserving News Recommendation Model Learning
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员