Content-Controllable Summarization generates summaries focused on the given controlling signals. Due to the lack of large-scale training corpora for the task, we propose a plug-and-play module RelAttn to adapt any general summarizers to the content-controllable summarization task. RelAttn first identifies the relevant content in the source documents, and then makes the model attend to the right context by directly steering the attention weight. We further apply an unsupervised online adaptive parameter searching algorithm to determine the degree of control in the zero-shot setting, while such parameters are learned in the few-shot setting. By applying the module to three backbone summarization models, experiments show that our method effectively improves all the summarizers, and outperforms the prefix-based method and a widely used plug-and-play model in both zero- and few-shot settings. Tellingly, more benefit is observed in the scenarios when more control is needed.
翻译:内容可控摘要化生成了以给定控制信号为重点的摘要。 由于缺乏大规模任务培训公司, 我们提议了一个插插和播放模块 RelAttn, 以使任何总总结器适应内容可控总和任务。 RelAttn 首先确定源文档中的相关内容, 然后让模型通过直接引导关注重量来关注正确的环境。 我们还应用了一个不受监督的在线适应参数搜索算法, 以确定零点设定中的控制程度, 而这种参数则在微小的设置中学习 。 通过将模块应用到三个主干总和模型, 实验显示我们的方法有效地改进了所有主干总和模型, 并超越了基于前缀的方法, 以及在零点和小点设置中广泛使用的插和播放模型。 说得很清楚的是, 当需要更多的控制时, 在假设中观察到了更多的好处。