The Retinex model is one of the most representative and effective methods for low-light image enhancement. However, the Retinex model does not explicitly tackle the noise problem, and shows unsatisfactory enhancing results. In recent years, due to the excellent performance, deep learning models have been widely used in low-light image enhancement. However, these methods have two limitations: i) The desirable performance can only be achieved by deep learning when a large number of labeled data are available. However, it is not easy to curate massive low/normal-light paired data; ii) Deep learning is notoriously a black-box model [1]. It is difficult to explain their inner-working mechanism and understand their behaviors. In this paper, using a sequential Retinex decomposition strategy, we design a plug-and-play framework based on the Retinex theory for simultaneously image enhancement and noise removal. Meanwhile, we develop a convolutional neural network-based (CNN-based) denoiser into our proposed plug-and-play framework to generate a reflectance component. The final enhanced image is produced by integrating the illumination and reflectance with gamma correction. The proposed plug-and-play framework can facilitate both post hoc and ad hoc interpretability. Extensive experiments on different datasets demonstrate that our framework outcompetes the state-of-the-art methods in both image enhancement and denoising.


翻译:Retinex 模型是提高低光图像的最有代表性和最有效的方法之一。然而, Retinex 模型没有明确地解决噪音问题,也没有表现出令人满意的提高效果。近年来,由于表现优异,深层次学习模型被广泛用于低光图像的增强。然而,这些方法有两个局限性:(1) 只有当有大量标签数据时,才能通过深层次学习达到理想的性能。然而,将大规模低/正常光度对齐数据进行校正并非易事;(2) 深层学习是一个臭名昭著的黑盒模型[1]。很难解释其内部工作机制并理解其行为。在本文中,利用连续的 Retinex 分解战略,我们设计了一个基于 Retinex 理论的插座和游戏框架,用于同时提高图像和清除噪音。与此同时,我们开发了一个基于革命神经网络的脱色(基于CNN)脱色功能,以生成一个反射部分。最后增强的图像是通过将图像的错误化和反射与图像升级的扩展性校正和图像校外框架相结合来生成的。拟议的模型演示演示框架。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年6月30日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月10日
Arxiv
0+阅读 · 2023年4月10日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年6月30日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员