In the last decade there has been a resurgence of interest in Frank-Wolfe (FW) style methods for optimizing a smooth convex function over a polytope. Examples of recently developed techniques include {\em Decomposition-invariant Conditional Gradient} (DiCG), {\em Blended Condition Gradient} (BCG), and {\em Frank-Wolfe with in-face directions} (IF-FW) methods. We introduce two extensions of these techniques. First, we augment DiCG with the {\em working set} strategy, and show how to optimize over the working set using {\em shadow simplex steps}. Second, we generalize in-face Frank-Wolfe directions to polytopes in which faces cannot be efficiently computed, and also describe a generic recursive procedure that can be used in conjunction with several FW-style techniques. Experimental results indicate that these extensions are capable of speeding up original algorithms by orders of magnitude for certain applications.
翻译:在过去的十年中,人们对弗兰克-沃夫(FW)的风格方法重新产生了兴趣,以优化一个多管区平滑的锥形功能。最近开发的技术的例子包括 ~em 解析- 差异性条件梯度} (DICG), ~em Blended Condition gradient} (BCG), 和 em Frank- Wolfe 及其面对面方向} (IF-FW) 方法。 我们引入了两种这些技术的扩展。 首先, 我们用 ~ 工作设置 战略来增强 DICG, 并展示如何使用 ~ 阴影简单阶梯步骤来优化工作设置 。 其次, 我们将面部的弗兰克- Wolfe 方向概括化为无法有效计算面部的多元形, 并描述一种可与几种FW 型技术一起使用的通用的循环程序 。 实验结果显示, 这些扩展能够在某些应用中通过数量级加速原始算法。