Multiple regression has been the go-to method for data analysis for generations of scholars due to its transparency, interpretability, and desirable theoretical properties. However, the method's simplicity precludes the discovery of complex heterogeneities in the data. We introduce the Method of Direct Estimation and Inference (MDEI) that embraces these potential complexities, is interpretable, has desirable theoretical guarantees, and, unlike some existing methods, returns appropriate uncertainty estimates. The proposed method uses a machine learning regression methodology to estimate the observation-level effect of a treatment variable. Importantly, we introduce a robust approach to uncertainty estimates. We provide simulation evidence and an application illustrating the performance of the method.
翻译:由于数据的透明度、可解释性和可取的理论特性,多层回归一直是几代学者数据分析的通向方法,但这种方法的简单性排除了在数据中发现复杂的差异。我们采用了包含这些潜在复杂性的直接估计和推论方法(MDEI),该方法可以解释,有可取的理论保证,并且与某些现有方法不同,还返回了适当的不确定性估计。拟议方法使用机械学习回归方法来估计治疗变量的观测水平影响。重要的是,我们对不确定性估计采用了一种稳健的方法。我们提供了模拟证据和应用来说明该方法的性能。