We investigate the twin-width of the Erd\H{o}s-R\'enyi random graph $G(n,p)$. We unveil a surprising behavior of this parameter by showing the existence of a constant $p^*\approx 0.4$ such that with high probability, when $p^*\le p\le 1-p^*$, the twin-width is asymptotically $2p(1-p)n$, whereas, when $p<p^*$ or $p>1-p^*$, the twin-width is significantly higher than $2p(1-p)n$. In particular, we show that the twin-width of $G(n,1/2)$ is concentrated around $n/2 - (\sqrt{3n \log n})/2$ within an interval of length $o(\sqrt{n\log n})$. For the sparse random graph, we show that with high probability, the twin-width of $G(n,p)$ is $\Theta(n\sqrt{p})$ when $(726\ln n)/n\leq p\leq1/2$.
翻译:我们调查了Erd\H{o}s-R\ enyi 随机图的双维 $G( n, p) 的 双维 。 我们通过显示一个恒定的 $p ⁇ approx 0.4 美元来揭开这个参数的惊人行为, 这样的可能性很高, 当 $p ⁇ le p\le 1- p 美元时, 双维是平的 2p( 1- p) n美元, 而当 $p < p $ 或 $ p> 1- p 美元时, 双维大大高于 2p(1 p) n。 特别是, 我们显示, $( n, 1/2) 的双维在 $/2 - (\ sqrt{ 3n\ log n} 0. 2 美元之间的间隔内, 双维是 $( n, p) n\\\ q\\\\\ r\ p. 美元时, $ ( n\ q\\\\\ p) $ ( nqle}