We study the time-dependent Navier-Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion, and we use the stochastic Galerkin method to extend the methodology from [D. A. Kay et al., \textit{SIAM J. Sci. Comput.} 32(1), pp. 111--128, 2010] into this framework. For the resulting stochastic problem, we explore the properties of the resulting stochastic solutions, and we also compare the results with that of Monte Carlo and stochastic collocation. Since the time-stepping scheme is fully implicit, we also propose strategies for efficient solution of the stochastic Galerkin linear systems using a preconditioned Krylov subspace method. The effectiveness of the stochastic Galerkin method is illustrated by numerical experiments.
翻译:具体地说,我们假设粘度是一个随机的字段,以普遍的多边混乱扩大的形式给出,我们使用随机的加勒金法将方法从[D.A.Kay等人,\textit{SIAM J.Sci.Comput.}32(1),第111-128页,2010年]扩展到这个框架中。对于由此产生的随机问题,我们探讨了由此产生的随机溶液的特性,我们还比较了蒙特卡洛和托拉尔合用地的结果。由于时间步骤办法完全隐含,我们还提出了使用具有先决条件的Krylov子空间方法高效解决高尔金定型线性系统的战略。用数字实验来说明随机加勒金方法的有效性。