The Discounted Least Information Theory of Entropy (DLITE) is a new information measure that quantifies the amount of entropic difference between two probability distributions. It manifests multiple critical properties both as an information-theoretic quantity and as metric distance. In the report, we provide a proof of the triangular inequality of DLITE's cube root ($\sqrt[3]{DL}$), an important property of a metric, along with alternative proofs for two additional properties.
翻译:折扣的最小信息负载理论(DLITE)是一个新的信息计量尺度,它量化了两种概率分布之间的倍数差异。它以信息理论数量和公尺距离来表示多个关键属性。在报告中,我们提供了DLITE立方根($\sqrt[3]{DL}$)三角不平等的证据,这是衡量尺度的一个重要属性,还有另外两种属性的替代证明。