Recommendation from implicit feedback is a highly challenging task due to the lack of reliable negative feedback data. Existing methods address this challenge by treating all the un-observed data as negative (dislike) but downweight the confidence of these data. However, this treatment causes two problems: (1) Confidence weights of the unobserved data are usually assigned manually, which lack flexibility and may create empirical bias on evaluating user's preference. (2) To handle massive volume of the unobserved feedback data, most of the existing methods rely on stochastic inference and data sampling strategies. However, since a user is only aware of a very small fraction of items in a large dataset, it is difficult for existing samplers to select informative training instances in which the user really dislikes the item rather than does not know it. To address the above two problems, we propose two novel recommendation methods SamWalker and SamWalker++ that support both adaptive confidence assignment and efficient model learning. SamWalker models data confidence with a social network-aware function, which can adaptively specify different weights to different data according to users' social contexts. However, the social network information may not be available in many recommender systems, which hinders application of SamWalker. Thus, we further propose SamWalker++, which does not require any side information and models data confidence with a constructed pseudo-social network. We also develop fast random-walk-based sampling strategies for our SamWalker and SamWalker++ to adaptively draw informative training instances, which can speed up gradient estimation and reduce sampling variance. Extensive experiments on five real-world datasets demonstrate the superiority of the proposed SamWalker and SamWalker++.


翻译:由于缺乏可靠的负面反馈数据,来自隐含反馈的建议是一项极具挑战性的任务,因为缺乏可靠的负面反馈数据。现有的方法应对这一挑战,将所有未观察的数据视为负(不同)数据,但降低这些数据的可信度。然而,这种处理造成两个问题:(1) 未观察数据的信心加权数通常是人工分配的,缺乏灵活性,并可能在评价用户偏好方面造成经验上的偏差。(2) 处理大量未经观察的反馈数据,大多数现有方法依赖于随机性推断和数据抽样战略。然而,由于用户仅知道大数据集中只有很小一部分项目,因此,现有取样员很难选择用户真正不喜欢该项目而不是不知道该项目的信息化培训实例。为了解决上述两个问题,我们提出了两种新颖的建议方法,即SamWalker和SamWalker++,既支持适应性信任派和高效模型学习。SamWalker模型数据依赖一种基于社会网络的识别功能,可以根据用户的社会背景对不同数据进行适应性设定不同重量。然而,现有的社会网络的精确度和精确度也难以选择五种数据化模型。因此,我们提出的数据化网络信息可能无法用于快速发展。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
55+阅读 · 2021年5月17日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【推荐系统】16篇最新推荐系统论文送你
深度学习自然语言处理
3+阅读 · 2020年3月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
10+阅读 · 2019年2月19日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
Top
微信扫码咨询专知VIP会员