To improve diagnostic accuracy of breast cancer detection, several researchers have used the wavelet-based tools, which provide additional insight and information for aiding diagnostic decisions. The accuracy of such diagnoses, however, can be improved. This paper introduces a wavelet-based technique, non-decimated wavelet transform (NDWT)-based scaling estimation, that improves scaling parameter estimation over the traditional methods. One distinctive feature of NDWT is that it does not decimate wavelet coefficients at multiscale levels resulting in redundant outputs which are used to lower the variance of scaling estimators. Another interesting feature of the proposed methodology is the freedom of dyadic constraints for inputs, typical for standard wavelet-based approaches. To compare the estimation performance of the NDWT method to a conventional orthogonal wavelet transform-based method, we use simulation to estimate the Hurst exponent in two-dimensional fractional Brownian fields. The results of the simulation show that the proposed method improves the conventional estimators of scaling and yields estimators with smaller mean-squared errors. We apply the NDWT method to classification of mammograms as cancer or control and, for publicly available mammogram images from the database at the University of South Florida, find the the diagnostic accuracy in excess of 80%.
翻译:为提高乳腺癌检测的诊断准确性,一些研究人员使用了基于波子的工具,这些工具为帮助诊断决定提供了更多的见解和信息。但是,这类诊断的准确性可以提高。本文介绍了一种基于波子的技术,即非淡化波子变换(NDWT)的缩放估计,它改进了传统方法的缩放参数估计。NDWT的一个显著特征是,它不会在多尺度水平上减少波子系数,从而产生冗余产出,用于降低缩放估计数据的差异。拟议方法的另一个有趣的特点是投入自由度限制,这是标准波子法典型的典型。为了将NDWT方法的估算性能与常规或多孔波子变变(NDWT)的缩放法相比较,我们用模拟来估计二维微小的布朗田域中赫斯特的亮度。模拟结果显示,拟议的方法改进了用于缩放和降测算结果的常规估测算器,其偏差较小。我们采用了NDWT方法,即输入输入输入输入数据的自由度限制,这是标准波子法方法的典型方法。我们将NDWT方法用于将NDWT方法的N方法的估算结果与常规分析结果,将80的磁测算结果作为可公开的磁测测算结果,用于大学的80的磁测取结果,或南方测测算。