My goal in this paper is twofold: to study how well deep models can understand the images generated by DALL-E 2 and Midjourney, and to quantitatively evaluate these generative models. Two sets of generated images are collected for object recognition and visual question answering (VQA) tasks. On object recognition, the best model, out of 10 state-of-the-art object recognition models, achieves about 60\% and 80\% top-1 and top-5 accuracy, respectively. These numbers are much lower than the best accuracy on the ImageNet dataset (91\% and 99\%). On VQA, the OFA model scores 77.3\% on answering 241 binary questions across 50 images. This model scores 94.7\% on the binary VQA-v2 dataset. Humans are able to recognize the generated images and answer questions on them easily. We conclude that a) deep models struggle to understand the generated content, and may do better after fine-tuning, and b) there is a large distribution shift between the generated images and the real photographs. The distribution shift appears to be category-dependent. Data is available at: https://drive.google.com/file/d/1n2nCiaXtYJRRF2R73-LNE3zggeU_HeH0/view?usp=sharing.


翻译:在本文中,我的目标有两个:研究深深模型如何理解DALL-E 2和Midjourney生成的图像,并定量评估这些基因模型。收集了两组生成的图像,用于对象识别和视觉问题解答(VQA)任务。在对象识别方面,在10个最先进的对象识别模型中,最佳模型分别达到大约60 ⁇ 和80 ⁇ 顶1和顶5的精确度。这些数字大大低于图像网络数据集(91 ⁇ 和99 ⁇ )的最佳精确度。在 VQA上,OFA模型在50个图像中回答241个二进制问题时,得分77.3 ⁇ 。在二进制VQA-VQA-V2数据集中,得分94.7 ⁇ 。人类能够很容易地识别生成的图像并回答问题。我们的结论是,a)深模型为理解生成的内容而经过微调后可能做得更好。b)在生成的图像和真实照片之间有很大的分布变化。在VQA上,OFA模型似乎取决于类别。数据可在 http://HDRVS/R3GO=L.com/file.

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年10月6日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员